
3314 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010

Analytic 1-D �� Junction Diode Photocurrent
Solutions Following Ionizing Radiation and Including

Time-Dependent Changes in the Carrier Lifetime
From a Nonconcurrent Neutron Pulse

Carl L. Axness, Bert Kerr, and Eric R. Keiter, Member, IEEE

Abstract—Circuit simulation codes, such as SPICE, are invalu-
able in the development and design of electronic circuits in radi-
ation environments. These codes are often employed to study the
effect of many thousands of devices under transient current condi-
tions. Device-scale simulation codes are commonly used in the de-
sign of individual semiconductor components, but computational
requirements limit their use to small-scale circuits. Analytic so-
lutions to the ambipolar diffusion equation, an approximation to
the carrier transport equations, may be used to characterize the
transient currents at nodes within a circuit simulator. We present
new analytic transient excess carrier density and photocurrent so-
lutions to the ambipolar diffusion equation for 1-D abrupt-junction

diodes. These solutions incorporate low-level radiation pulses
and take into account a finite device geometry, ohmic fields outside
the depleted region, and an arbitrary change in the carrier lifetime
due to neutron irradiation or other effects. The solutions are specif-
ically evaluated for the case of an abrupt change in the carrier life-
time during or after, a step, square, or piecewise linear radiation
pulse. Noting slow convergence of the Fourier series solutions for
some parameters sets, we evaluate portions of the solutions using
closed-form formulas, which result in a two order of magnitude in-
crease in computational efficiency.

Index Terms—Ambipolar diffusion equation, finite Fourier
transform, neutron irradiation, transform techniques, transient
radiation effects.

I. INTRODUCTION

T RANSPORT behavior of excess carriers in semiconduc-
tors is described by the equations of current and continuity

for electrons and holes as well as Poisson’s equation, which re-
lates the electric field and net charge density. For each carrier,
the current equation may be substituted into the continuity equa-
tion, resulting in three equations describing carrier transport [1,
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pp. 320–327]. The three resulting equations are not amenable
to exact analytic mathematical techniques. The electrical neu-
trality or charge balance approximation suggested by Van Roos-
broeck [2] is used to combine the electron and hole current-con-
tinuity equations into the single ambipolar diffusion equation
(ADE) [1, pp. 327–328]. The electrical neutrality approxima-
tion states that the excess electron and hole densities are equal
everywhere within the device. The parameters of the resulting
approximate equation are the ambipolar diffusion parameters,
as described in Table I. The electric field in the ambipolar dif-
fusion equation includes an external field imposed by a voltage
bias applied at the device contacts and an internal field set up by
the charged particles within the device.

Analytic mathematical models [3], [4] have been developed
over the past four decades that predict transient radiation-in-
duced photocurrents due to excess carrier generation in 1-D
junction diodes, and have often been the basis for compact de-
vice models used in circuit simulation. These models are gener-
ally applicable under limited boundary conditions with restric-
tions on the carrier generation rate. An early transient radiation
effects model is that of Wirth–Rogers [3], which describes the
current density solution to the ambipolar diffusion equation for
a semi-infinite 1-D junction diode with no ohmic field in the
undepleted region. Stuetzer [4] examined the steady-state be-
havior of a diode under radiation and found the excess carrier
and current densities for a diode of finite extent. Work by Ax-
ness, Kerr, and Wunsch [5] extended the solution to monochro-
matic light pulses and found an -dimensional transformation
from the ADE to the nonhomogeneous heat equation. This paper
generalizes the solutions of [5] to the particular case of a time-
dependent change in the carrier lifetime during or after irradia-
tion. This behavior might be expected for a neutron pulse that
is not coincident with the device irradiation. The mathematical
solutions presented here can form the basis for a compact model
of combined (neutron and gamma) radiation effects. These com-
pact models are the backbone of circuit simulation codes and
enable qualification of rad-hard circuit designs.

The effect of neutron damage to semiconductor devices has
been studied by a number of authors (see [6] for review). Neu-
trons and other high-energy particles collide and displace lattice
atoms in semiconductors, creating Frenkel defects. Primary dis-
placed atoms typically have enough energy to create secondary
defects. These vacancies may combine with dopant and impu-
rity atoms to form stable defects, which, in turn, may serve as
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TABLE I
DEFINITION AND DESCRIPTION OF IMPORTANT

PHYSICAL CONSTANTS AND PARAMETERS

recombination centers, decreasing carrier lifetime. The decrease
in carrier lifetimes in doped semiconductor materials after ex-
posure to a neutron fluence has been characterized as an abrupt
decrease followed by a rapid short-term anneal (on the order of
a few hours) and a long-term anneal (on the order of months),
in which the carrier lifetime increases ([6]). Because the time
scales associated with the annealing periods following a neu-
tron pulse are very long in comparison to the length of a typical
high-energy radiation (gamma) pulse, only an abrupt change in
carrier lifetime is considered in this article. However, the general
development of the next section allows an arbitrary time-depen-
dent form of carrier lifetime.

The dynamics of neutron irradiation imply that the lattice
damage and carrier lifetime degradation could be spatially de-
pendent. To our knowledge, there is not a mathematical model
describing this dependence. Our analysis assumes a spatially
uniform carrier lifetime degradation; however, it may be pos-
sible to modify the analysis to a simple form of a spatially de-
pendent lifetime. We do consider the possible spatial depen-
dence of the excess carrier generation density. The resulting
equations may be used to analyze the effects of a neutron ir-
radiation on the photocurrent from an abrupt junction diode
illuminated by monochromatic light, for example.

Fig. 1 shows a reverse-biased diode under light or ion-
izing radiation. We assume ohmic contacts at the device ends.
The local coordinates are taken for convenience in the mathe-
matical analysis. The photocurrent for the entire device consists
of the sum of the depletion-zone photocurrent with the two mi-
nority carrier diffusion photocurrents from the undepleted re-
gions [3]. For many reverse bias pn diodes in integrated-circuit
(IC) applications, the depletion-zone photocurrent will be small
in comparison with the diffusion currents and is ignored in this

Fig. 1. Reverse-biased �� diode under light or ionizing irradiation. The de-
vice is irradiated from the left. For the 1-D analysis, the contacts are assumed
to cover the entire left- and right-hand surfaces. The shaded region represents
the depletion zone and the unshaded regions represent undepleted zones. The
total current is the sum of the drift and diffusion current from the depleted and
undepleted zones. Local coordinate systems are shown.

paper. A depletion-zone photocurrent analysis considering life-
time degradation from a neutron strike is given in [7].

II. MATHEMATICAL DEVELOPMENT—SOLUTION TO THE 1-D
AMBIPOLAR DIFFUSION EQUATION

In Cartesian coordinates under the assumption of charge
neutrality, low-level gamma irradiation, and a time-dependent
carrier lifetime, the 1-D ambipolar diffusion equation may be
written as [1], [2]

(1)
where is the excess carrier density ( or ), and
is the excess carrier generation rate (in excess of the thermal
carrier generation rate). The equations for the ambipolar coeffi-
cients and and are given in Table I. is the electric
field, composed of an internal field due to internal-charged car-
riers and an applied field due to an applied potential. We assume
the boundary conditions at the contact and the edge of the de-
pletion region are

(2)

with the initial condition . , the width of the
undepleted region in which we solve the ADE, is constant as
is W, the depletion width. The ambipolar carrier lifetime
is assumed to be a spatially uniform function of time in our
analysis. Inherent in the derivation of the ambipolar diffusion
equation is the assumption that the minority and majority carrier
lifetimes are affected equally with respect to time. Specifically,
[1, eq. 10.2–29] becomes

(3)

where and are the average hole and electron carrier
lifetimes, respectively, under preirradiation thermal equilibrium
conditions. The quantities and are the concentrations of
holes and electrons under preirradiation thermal equilibrium
conditions. For low-level injection, is much less than
the majority carrier doping for the device, and the ambipolar
coefficients become approximately those of the minority carrier
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in the undepleted regions. Thus, for an -type device under
low-level irradiation, , , and become , , and

, respectively. From this point on, we further simplify our
analysis by dropping subscripts, noting that , , and are
associated with the minority carrier of each region. The current
density is given by [1]

(4)

where is positive for the computation of in -type material
and negative for the computation of in -type material. The
leading sign on the right-hand side of the previous equation is
chosen so that is positive in our analysis.

The general solution to (1) is derived in Appendix A. It is

(5)

The definitions of , , , and are given in Ap-
pendix A. Equation (5) represents the general solution for the
excess carrier density. For the undepleted -doped region, the
corresponding current density evaluated at 0 is

(6)

The expressions given by (5) and (6) may be used to evaluate
the excess carrier and current density distributions for an arbi-
trary function . In the case where the initial excess carrier
density is zero at time 0, 0 and the first term is
eliminated in the expressions. However, we note that the first
term gives us a number of options in simulation. For example,
we may stop a simulation and restart using the excess carrier
density at the stopping time as the initial excess carrier density
upon restart. Using this option, we may change parameters after
stopping to approximate, in a piecewise linear fashion, nonlinear
problems in which parameters change with respect to time. With
careful consideration of charge conservation and changes in the
depletion region boundary, we may also approximate moving
boundary problems resulting from device bias changes during
irradiation.

A. Special Cases

For the case of and (spatial variation
only; no initial excess carriers), (5) reduces to

(7)

in which is given by (30) in Appendix A. From (6),
becomes

(8)

For the case where and 0 (time varia-
tion only; no initial excess carriers), (5) reduces to

(9)

in which

(10)

From (6), we find

(11)

When 0 and, therefore, 0, 0 for even and
for odd. Under these conditions, any solution

may be re-indexed to sum over only the odd terms, replacing the
term by and multiplying the leading coefficient of

the series by a factor of 2 (see [7]).

B. Abrupt Change in Carrier Lifetime With

A particular case of interest is that of an abrupt change in the
carrier lifetime; , and , , for
which the integral in the exponential terms becomes

(12)
so that

(13)

and from (11)

(14)

where

(15)
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and

(16)

in which .

C. Case 1: is a Step Function, i.e., ,

In this case, the evaluation of (15) gives

(17)

Substitution of (17) into either (13) or (14) provides us with
the relevant solutions. The convergence rates of the two respec-
tive series may, however, be significantly improved by decom-
posing them into steady-state and transient components, and
then replacing the steady-state series with the closed-form for-
mulas given in Appendix B. The solution for may then
be written

(18)
where

(19)

and . Applying the same technique to (14)
using (17), we have

(20)
in which

(21)

The terms and represent the steady-state mi-
nority excess carrier and current densities with respect to the
initial and final minority carrier lifetimes. We

note that (18) and (20) agree with (18) and (19) of Axness et
al. [5] for the case where there is no change in carrier lifetime

(see [7]).

D. Case 2: is a Square Pulse

In this case, the carrier lifetime is that of the previous section.
The excess carrier generation density is defined by

, where denotes the Heaviside function.
For the case where the neutron pulse occurs during the gamma
irradiation , we may evaluate using (15) as

(22)

For the case where the neutron pulse occurs after the gamma
irradiation , we may evaluate using (15) as

.

(23)

As expected, both equations are the same as those for the step
function except over the interval . We note that (23)
over the range takes the form of , evaluated at the
previous endpoint multiplied by an exponential term dependent
upon the time elapsed since that endpoint. The term in the
exponential argument represents the rate of decrease of excess
carriers for each eigenvalue taking into account losses through
drift, diffusion, and recombination. This rate is dependent upon
the minority carrier lifetime during which the elapsed time oc-
curs ( 1 for and 2 for ). Similar terms occur in
(22). Over the range of in (22), the second term on
the right-hand side represents the contribution of excess carriers
produced during this period while the first term represents the
contribution of carriers produced in the interval . The
final equation for has the same form as (23). Finally, we
note that semiclosed-form solutions for and may
be obtained as derived in [7]. For , the results are
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Fig. 2. Photocurrent from the undepleted �-doped region of a �� diode due to
gamma irradiation with a concurrent neutron pulse. � is the prepulse minority
carrier lifetime and � is the postneutron pulse minority carrier lifetime.

where and are given by (19) and (21). These terms
represent the steady-state excess carrier and current densities.
The equations for the case where are given in [7].

As an example, we use the parameters of Fig. 2 in [5] to ex-
amine the photocurrent response in the undepleted -type re-
gion of a diode due to a 2.4 s square-wave gamma irra-
diation of generation density. A neutron pulse
is assumed to occur at 1.5 s with a minority carrier lifetime
degradation of one to four orders of magnitude. Other param-
eters were assigned as 0.015, 0.32, and

. The ohmic field was set to zero. Similar pulse
lengths are often used in testing. These parameters are typical
for large devices, but smaller devices and shorter pulses will
yield curves similar to Fig. 2. The gamma irradiation is assumed
longer in this example than in [5, Fig. 2] to illustrate the dual
steady-state behavior of the photocurrent.

Fig. 2 gives the analytic photocurrent density with respect
to time for the aforementioned parameters. The top (solid)
curve assumes the default minority carrier lifetime over the
entire pulse length (no lifetime degradation). This curve is
labeled , where is the minority
carrier lifetime before the neutron pulse and is the lifetime

after the neutron pulse. The convergence to a steady current
is evident. The photocurrent density curve directly below the
top curve corresponds to the case where s. It is
clear that this photocurrent shows a noticeable decrease when
compared with the nondegraded photocurrent over the time
spanned after the neutron pulse through the end of the gamma
irradiation. The curves corresponding to degradations of two
orders of magnitude or more show a more apparent decrease
in photocurrent to a second steady state associated with this
degraded carrier lifetime for the remainder of the gamma pulse.
This example shows a dual steady-state behavior resulting from
the degraded carrier lifetime.

E. Case 3: is a Piecewise Linear Pulse

Experiments conducted at high-energy facilities generally
measure the radiation generation density. Typically, the func-
tion describing this pulse is not a square wave, but may easily
be described by a piecewise linear function with respect to
time as shown in Fig. 3. For the two cases where the neutron
pulse occurs during or after the gamma irradiation, we have
evaluated using (15). The derivation may be found in [7].
Using the expression for and replacing the infinite series
with closed-form formulas in some terms enables us to obtain a
much faster convergence rate in the expressions for and

(see [7]). The solutions may then be written

(24)

and

(25)
with , , and given in Appendix B. Since the
expression for is general in the aforementioned derivation,
we may also compute and for the case where
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Fig. 3. Piecewise linear gamma irradiation generation density with a neutron
pulse at � � � . The �� diode minority carrier lifetime is � � � for � � � and
� � � for � � � .

Fig. 4. Figure exhibiting minority current density behavior versus time from
the undepleted �-doped region of an �� diode for a negative ohmic field (top)
and no ohmic field (bottom). The “closed-form” portions of the solutions are
shown by the dashed line segments while the total current densities are given
by continuous curves. Note the approach to the closed-form solution as time
from the previous generation function endpoint increases. A high ohmic field
of � � �40 V/cm was assumed in the upper plot to illustrate the bounding
behavior of the closed-form part of the solution.

by employing (24) and (25) and by introducing an additional
segment to Fig. 3, upon which we define 0 for

.
In the case of the piecewise linear generation function, the

closed-form portion of the current density consists of a set of
line segments that bound the total current density when the
number of terms in the computation is sufficiently large (about
50 terms). In the case where a negative ohmic field exists
in the undepleted region, the current density approaches the
line segments away from the generation function endpoints
since the transient time-dependent exponential terms become
small in these regions. In the case where there is no ohmic
field, the current density does not necessarily approach the line
segments, but the line segments bound the area in which the
current density meanders. The behavior for both of these cases
is shown in Fig. 4. For this figure, is defined by the points

as , ,
, , , , , and (see

Fig. 3). Other parameters are , ,
, , , and
.

III. CONCLUSION

In this paper, we develop new solutions to the 1-D ambipolar
diffusion equation (ADE) under low-level radiation conditions
to approximate the photocurrent produced by a radiation pulse
in the undepleted parts of an diode when the minority car-
rier lifetime is a function of time. Using Fourier sine series tech-
niques developed in [8], we develop a general analytical solution
to the 1-D ADE for the case where the excess carrier generation
(a radiation or light pulse) is a function of time and space, which
further simplifies when the excess carrier generation is either a
function of time only or of space only. Solutions are developed
for the occurrence of a neutron strike, which results in an in-
stantaneous reduction of the carrier lifetimes within the device,
either during or after a light or radiation pulse. The carrier life-
time is assumed to be spatially uniform within the device. For
the particular case where the gamma pulse is time dependent
only, the solution may be written as an infinite sum with each
term consisting of the product of a time-dependent integral and
a spatially dependent sine function. A number of cases are ex-
plored and illustrated with examples.

For the first case studied, the gamma irradiation is of the form
of a step function , . In this case, the neutron
pulse occurs during the gamma step function irradiation. The
carrier lifetimes in each region of the diode instantaneously
decrease at a time and a reduction of current results that
approaches a steady-state current dependent upon the decreased
carrier lifetime. Equations are given in Section II-C.

For the second case, we assume that the gamma irradiation is
of the form of a square pulse, with , , and
zero for . The neutron pulse may occur during the gamma
irradiation or while the device is recovering from the gamma
pulse. The carrier and current densities are given for the unde-
pleted -type region of a diode with realistic parameters and
a lifetime degradation spanning up to four orders of magnitude.
The current densities are compared to those of a device with no
carrier lifetime degradation for a neutron strike occurring during
the gamma irradiation. For an order of magnitude degradation
of the lifetime, only a small reduction in the photocurrent den-
sity is observed. For larger reductions in lifetime, very signifi-
cant changes in the photocurrent occur. For long enough pulses,
two steady states are observed, one associated with the original
carrier lifetime and a second associated with the degraded car-
rier lifetime. In [7], we show the time history of the 1-D excess
carrier density, which shows an abrupt decrease at the time asso-
ciated with the lifetime degeneration. We also show an example
problem where an ohmic field is present, which exhibits an ex-
tended current “tail” compared to the case of no ohmic field. For
the case where there is no lifetime degradation, the equations are
checked and found to be consistent with those of [5].

Finally, we solve the excess carrier and current densities for
the case where is piecewise linear with respect
to time and the abrupt change in lifetime occurs during or after
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the pulse. This form of solution can be incorporated into circuit
simulation codes, such as Xyce [9] or SPICE [10], and can be
used to characterize the radiation sources at experimental facil-
ities. The newly developed solutions have closed-form and in-
finite series components. The series components require only a
few tens of terms for convergence with the accuracy increasing
as we move away from the points and the endpoints of .
Examples are shown for both a zero and large ohmic field.

APPENDIX A
GENERAL SOLUTION OF ADE USING THE

FINITE FOURIER TRANSFORM

We can solve the aforementioned boundary value problem via
the substitution , which will transform (1)
to

(26)

where . The transformed boundary conditions re-
main type I, homogeneous, while the initial condition becomes

. The resulting boundary value problem
may be solved by the finite Fourier sine transform [8]. That is,
define

(27)

with inversion formula

(28)

in which . Applying this transform to (26), yields
the ODE

(29)

in which

(30)

Applying the transform to the initial condition simply provides
us with the initial condition for our ODE

Therefore, the solution of our ODE is given by

(31)

Substituting (31) into (28), we obtain . Therefore

(32)

APPENDIX B
STEADY-STATE FORMULAS

The aforementioned steady-state formulas, which appear in
Section II, are presented below. A more detailed derivation is
given in [7]. In brief, using Fourier expansion formulas (see [11,
p. 13]), it can be shown that

(33)

in which . Differentiating (33) with respect to
, then replacing each with zero, reveals that

(34)

Then, differentiating (33) and (34) with respect to , we find

(35)

and

(36)
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Formulas (34) and (36) are required for computing while
(33) and (35) are required for computing . is given
by
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